Random variables and

 probability distributions

Random Variables (1)

- Random variable is a numerical summary of random outcomes.
(0. A random variable is a variable that takes on numerical values realized by the outcomes in the sample space generated by a random experiment.

A random variable X associates a numerical value with each outcome of an experiment.
(1) The word "random" serves as a reminder of the fact that, beforehand, we do not know the outcome of an experiment or its associated value of X .
(1) We use capital letters like X and Y to denote random variables and lowercase letters like x and y to denote their specific values.

Example: Consider X to be the number of heads obtained in three tosses of a coin.
a. List the numerical values of X and the corresponding elementary outcomes.
b. Identify all of the elementary outcomes that produce the value x

Random Variables (2)

Answer:

a. First, X is a variable since the number of heads in three tosses of a coin can have any of the values $0,1,2$, or 3 . Second, this variable is random in the sense that the value that would occur in a given instance cannot be predicted with certainty. We can, though, make a list of the elementary outcomes and the associated values of X .

Outcome	Value of X
HHH	3
HHT	2
HTH	2
HTT	1
THH	2
THT	1
TTH	1
TTT	0

b. Scanning our list, we now identify the events (i.e., the collection of the elementary outcomes) that correspond to the distinct values of X.

Numerical Value of X as an Event	Composition of the Event
$[X=0]$	$=\{$ TTT $\}$
$[X=1]$	$=\{$ HTT, THT, TTH $\}$
$[X=2]$	$=\{$ HHT, HTH,THH $\}$
$[X=3]$	$=\{$ HHH $\}$

Random Variables ${ }_{(3)}$

Random variables can be discrete or continuous.
A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
(1) Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
(1) Probability model for a continuous random variable
(1) Normal distribution

- Standard normal distribution
(1) Probability calculations with normal distributions

Probability distribution of a discrete random variable ${ }_{(1)}$

(1) The probability distribution of a random variable is a representation of the possibilities for all possible outcomes.

The probability distribution or, simply the distribution, of a discrete random variable X is a list of the distinct numerical values of X along with their associated probabilities.

Often, a formula can be used in place of a detailed list.
(1) The probability that a particular value x_{i} occurs is denoted by $f\left(x_{i}\right)$.

Form of a Discrete Probability Distribution	
Value of x	Probability $f(x)$
x_{1}	$f\left(x_{1}\right)$
x_{2}	$f\left(x_{2}\right)$
\cdot	\cdot
\cdot	\cdot
\cdot	$f\left(x_{k}\right)$
x_{k}	1
Total	

Probability distribution of a discrete random variable ${ }_{(2)}$

Example:

If X represent the number of heads obtained in three tosses of a fair coin, find the probability distribution of X. Answer: The distinct values of X are $x=0,1,2$, and 3 . Their probabilities would be,

The Probability Distribution of X	
the Number of Heads in Three Tosses of a Coin	
Value of X	Probability
0	$\frac{1}{8}$
1	$\frac{3}{8}$
2	$\frac{3}{8}$
3	$\frac{1}{8}$
Total	1

Probability distribution of a discrete random variable ${ }_{(3)}$

The probability distribution of a discrete random variable X is described as the function

$$
f\left(x_{i}\right)=P\left[X=x_{i}\right]
$$

which gives the probability for each value and satisfies:

1. $f\left(x_{i}\right) \geq 0$ for each value x_{i} of X
2. $\sum_{i=1}^{k} f\left(x_{i}\right)=1$
(1) A probability distribution or the probability function describes the manner in which the total probability 1 gets apportioned to the individual values of the random variable.

Probability distribution of a discrete random variable (4)

Example:

The following table describes the number of homework assignments due next week for a randomly selected set of students taking at least 14 credits. Determine the probability that;
a) X is equal to or larger than 2 and
b) X is less than or equal to 2 .

Answer

a) The event $[X \geq 2]$ is composed of $[X=2]$,

$$
\begin{aligned}
& {[\mathrm{X}=3] \text { and }[\mathrm{X}=4] . \text { Thus, }} \\
& P[X \geq 2]=f(2)+f(3)+f(4) \\
& \quad=0.40+0.25+0.10=\mathbf{0 . 7 5}
\end{aligned}
$$

b) Similarly,

$$
\begin{aligned}
P[X \leq 2] & =f(0)+f(1)+f(2) \\
& =0.02+0.23+0.40=\mathbf{0 . 6 5}
\end{aligned}
$$

A Probability Distribution for Number of Homework Assignments Due Next Week

Value x	Probability $f(x)$
0	.02
1	.23
2	.40
3	.25
4	.10

A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
\checkmark Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
(1) Probability model for a continuous random variable
(1) Normal distribution

- Standard normal distribution
(1) Probability calculations with normal distributions

Mean (expected value) of a probability distribution (1)

(6) The mean of a random variable X is also called its expected value and, alternatively, denoted by $E(X)$.

$$
\begin{aligned}
& \text { The mean of } X \text { or population mean } \\
& \qquad \begin{aligned}
E(X) & =\mu \\
& =\sum(\text { Value } \times \text { Probability })=\sum x_{i} f\left(x_{i}\right)
\end{aligned}
\end{aligned}
$$

Here the sum extends over all the distinct values x_{i} of X.

Example: A construction company submits bids for two projects. Listed here are the profit and the probability of winning each project. Assume that the outcomes of the two bids are independent.
a) List the possible outcomes (win/not win) for the two projects and find their probabilities.
b) Let X denote the company's total profit out of the two contracts. Determine the probability distribution of X.
c) If it costs the company $\$ 2000$ for preparatory surveys and paperwork for the two bids, what is the expected net profit?

	Chance of winning bid	
Profit	$\$ 175,000$	0.50
Project B	$\$ 220,000$	0.65

Mean (expected value) of a probability distribution (2)

Answers:

a) Lets denote "win" by W and "not win" by N, and attach subscripts A or B to identify the project. Listed here are the possible outcomes and calculation of the corresponding probabilities.
For instance, $P\left(W_{A} N_{B}\right)=P\left(W_{A}\right) P\left(N_{B}\right)$, by independence

$$
=0.50 \times 0.35=0.175
$$

$$
\begin{array}{cc}
\text { Outcome } & \text { Probability } \\
\hline W_{A} W_{B} & 0.50 \times 0.65=0.325 \\
W_{A} N_{B} & 0.50 \times 0.35=0.175 \\
N_{A} W_{B} & 0.50 \times 0.65=0.325 \\
N_{A} N_{B} & 0.50 \times 0.35=0.175 \\
\hline
\end{array}
$$

b) and c) The amounts of profit (X) for the various outcomes are listed below.

Outcome	Profit (\$) X
$W_{A} W_{B}$	$175,000+220,000=395,000$
$W_{A} N_{B}$	175,000
$N_{A} W_{B}$	220,000
$N_{A} N_{B}$	0

Mean (expected value) of a probability distribution (3)

Answer...cont'ed
Present the probability distribution of X and calculate $E(X)$.

x	$f(x)$	$x f(x)$	
0	0.175	0	
175,000	0.175	30,625	
220,000	0.325	71,500	
395,000	0.325	128,375	
Total		230,500	$=E(X)$

Expected net profit $=E(X)-$ cost $=\$ 230,500-\$ 2,000=\$ \mathbf{2 2 8}, 500$

Variance and standard deviation of probability distribution ${ }_{(1)}$

(0) The variance of X is abbreviated as $\operatorname{Var}(X)$ and is also denoted by σ^{2}.

$$
\operatorname{Var}(X)=\sum(\text { Deviation })^{2} x(\text { Probability })=\sum\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
$$

(0) The standard deviation of X is the positive square root of the variance and is denoted by $\operatorname{sd}(X)$ or σ (a Greek lower-case sigma).

Variance and standard deviation of probability distribution (2)

Example:

Upon examination of the claims records of 280 policy holders over a period of five years, an insurance company makes an empirical determination of the probability distribution of $X=$ number of claims in five years.
a) Calculate the expected value of X.
b) Calculate the standard deviation of X .

x	$f(x)$
0	.315
1	.289
2	.201
3	.114
4	.063
5	.012
6	.006

x	$f(x)$	$x f(x)$	$x^{2} f(x)$
0	0.315	0	0
1	0.289	0.289	0.289
2	0.201	0.402	0.804
3	0.114	0.342	1.026
4	0.063	0.252	1.008
5	0.012	0.060	0.300
6	0.006	0.036	0.216
Total		1.381	3.643

Answers:

(a) \& (b) The expectation and standard deviation of X are calculated in the left side table.
$E(X)$ or $\mu=\mathbf{1 . 3 8 1}$
$\operatorname{var}(X)$ or $\sigma^{2}=3.643-(1.381)^{2}=1.736$
Standard deviation of X is $\sigma=\sqrt{1.736}=\mathbf{1 . 3 1 8}$
A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
\checkmark Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
\checkmark Probability model for a continuous random variable
(1) Normal distribution

- Standard normal distribution
(1) Probability calculations with normal distributions

Probability model for a continuous random variable ${ }_{(1)}$

(1) The probability distribution of a continuous random variable can ideally assume any value in an interval.

The probability density function $f(x)$ describes the distribution of probability for a continuous random variable. It has the properties:

1. The total area under the probability density curve is 1 .
2. $P[a \leq X \leq b]=$ area under the probability density curve between a and b.
3. $f(x) \geq 0$ for all x.

With a continuous random variable, the probability that $X=x$ is always 0 . It is only meaningful to speak about the probability that X lies in an interval.
(1) A single point x , being an interval with a width of 0 , supports 0 area, so $P[X=x]=0$

Probability model for a continuous random variable (2)

(1) When determining the probability of an interval a to b, we need not be concerned if either or both endpoints are included in the interval. Since the probabilities of $X=a$ and $X=b$ are both equal to 0 ,

$$
P[a \leq X \leq b]=P[a<X \leq b]=P[a \leq X<b]=\mathrm{P}[a<X<b]
$$

(1) $\mathrm{P}[\boldsymbol{a}<\boldsymbol{X}<\boldsymbol{b}]=($ Area to left of $\boldsymbol{b})-$ (Area to the left of \boldsymbol{a})

(1) $\mathrm{P}[b<\boldsymbol{X}]=\mathbf{1}$ - (Area to left of \boldsymbol{b})

Features of a continuous distribution (1)

(a) Symmetry and deviations from symmetry

Features of a continuous distribution (2)

> The population $100 p$-th percentile is an x value that supports area p to its left and $1-p$ to its right.

> $$
> \begin{aligned} \text { Lower (first) quartile } & =25 \text { th percentile } \\ \text { Second quartile (or median) } & =50 \text { th percentile } \\ \text { Upper (third) quartile } & =75 \text { th percentile }\end{aligned}
>
$$

- Mean is the balance point and median is the point of equal division of the probability mass.

$$
\begin{aligned}
& \text { The standardized variable } \\
& \qquad Z=\frac{X-\mu}{\sigma}=\frac{\text { Variable }- \text { Mean }}{\text { Standard deviation }} \\
& \text { has mean } 0 \text { and sd } 1 \text {. }
\end{aligned}
$$

Features of a continuous distribution (3)

Example: Which of the functions sketched below could be a probability density function for a continuous random variable? Why or why not?

(a) The function is non-negative and the area of the rectangle is $0.5 \times 2=1$. It is a probability density function.
(b) Since $f(x)$ takes negative values over the interval from 1 to 2 , it is not a probability density function.
(c) The function is non-negative and the area of the triangle is $\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 2 \times 1=1$. It is a probability density function.
(d) The function is non-negative, but the area of the rectangle is $1 \times 2=2$ so it is not a probability density function.

Features of a continuous distribution (4)

Example ...cont'ed

Determine the following probabilities from the curve $f(x)$ diagrammed in above example (a).
a) $P[0<X<0.5]$

Answer : $P[0<X<0.5]=$ Area under $f(x)$ between the points 0 and $0.5=0.5 \times 0.5=\mathbf{0 . 2 5}$
b) $P[0.5<X<1]$

Answer: $P[0.5<X<1]=(1-0.5) \times 0.5=\mathbf{0 . 2 5}$
c) $P[1<X<2]$

Answer: $P[1<X<2]=(2-1) \times 0.5=\mathbf{0 . 5}$
d) $P[X=1]$

Answer: $\mathrm{P}[\mathrm{X}=1]=\mathbf{0}$
A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
\checkmark Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
\checkmark Probability model for a continuous random variable
\checkmark Normal distribution

- Standard normal distribution
(1) Probability calculations with normal distributions

Normal distribution ${ }_{(1)}$

(1) The normal probability distribution represents a large family of distribution, each with unique specification for the parameters μ and σ^{2}.
(1) The normal distribution curve is symmetric about its mean $\boldsymbol{\mu}$, which locates the peak of the bell.
(1) The probability of the interval extending,

- One sd on each side of the mean:

$$
P[\mu-\sigma<X<\mu+\sigma]=0.683
$$

2 Two $s d$ on each side of the mean:

$$
P[\mu-2 \sigma<X<\mu+2 \sigma]=0.954
$$

- Three sd on each side of the mean:

$$
P[\mu-3 \sigma<X<\mu+3 \sigma]=0.997
$$

- The curve never reaches 0 for any value of x, but because the tail areas outside ($\mu-3 \sigma, \mu+3 \sigma$) are very small, we usually terminate the graph at these points.

Normal distribution ${ }_{(2)}$

(0) If we know the mean and variance, we can define the normal distribution by using the following notation:

Notation

The normal distribution with a mean of μ and a standard deviation of σ is denoted by $\mathrm{N}(\mu, \sigma)$.
(1) Change of mean from μ_{1} to a larger value μ_{2} merely slides the bell-shaped curve along the axis until a new center is established at μ_{2}. There is no change in the shape of the curve.

Normal distribution (3)

(1) A different value for the σ results in a different maximum height of the curve and changes the amount of the area in any fixed interval about μ. The position of the center does not change if only σ is changed.
(1) Decreasing σ increases the maximum height and the concentration of probability about μ.

A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
\checkmark Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
\checkmark Probability model for a continuous random variable
\checkmark Normal distribution
\checkmark Standard normal distribution
(1) Probability calculations with normal distributions

Standard normal distribution (1)

(1) The particular normal distribution that has a mean of 0 and a standard deviation of 1 is called the standard normal distribution.

The standard normal distribution has a bell-shaped density with
Mean $\mu=0$
Standard deviation $\sigma=1$
The standard normal distribution is denoted by $N(0,1)$.

Standard normal distribution (2)

(1) The following properties can be observed from the symmetry of the standard normal curve about 0 .

$$
\begin{array}{ll}
\text { 1. } & P[Z \leq 0]=0.5 \\
\text { 2. } & P[Z \leq-z]=1-P[Z \leq z]=P[Z \geq z]
\end{array}
$$

Example:

Find $P[Z \leq 1.37]$ and $P[Z>1.37]$
Answer:
From the normal table, we see that the probability or area to the left of 1.37 is $\mathbf{0 . 9 1 4 7}=[Z \leq 1.37]$.

Due to $[Z>1.37]$ is the complement of $P[Z \leq 1.37]$
$[Z>1.37]=1-P[Z \leq 1.37]=1-0.9147=\mathbf{0 . 0 8 5 3}$

Standard normal distribution (3)

Example:

Calculate $P[-0.155<Z<1.60]$
Answer:
$P[Z<1.60]=$ Area to left of $1.60=0.9452$
$[Z \leq-0.155]=$ Area to left of $-0.155=0.4384$
$\therefore P[-0.155<Z<1.60]=0.9452-0.4384=\mathbf{0 . 5 0 6 8}$

Example:

Find $P[Z<-1.9$ or $Z>2.1]$
Answer:
The two events $Z<-1.9$ and $Z>2.1$ are incompatible, so we add their probabilities:

$$
\begin{aligned}
P[Z<-1.9 \text { or } Z>2.1] & =P[Z<-1.9]+P[Z>2.1] \\
& =0.0287+0.0179=\mathbf{0 . 0 4 6 6}
\end{aligned}
$$

Standard normal distribution (4)

Example:

Locate the value of z that satisfies $P[Z>z]=0.025$

Answer:

The total area is 1 , the area to the left of z must be $1-0.0250=0.9750$. The marginal value with

the tabular entry 0.9750 is $z=1.96$

Example: Obtain the value of z for which $P[-z \leq Z \leq z]=0.9$ Answer:

We observe from the symmetry of the curve that

$$
P[Z<-z]=P[Z>z]=0.05
$$

From the normal table $z=1.65$

A. Discrete random variable
\checkmark Probability distribution of a discrete random variable
\checkmark Mean (expected value) and standard deviation of a probability distribution
B. Continuous random variable
\checkmark Probability model for a continuous random variable
\checkmark Normal distribution
\checkmark Standard normal distribution
\checkmark Probability calculations with normal distributions

Probability calculations with normal distributions

(To find the probability that X lies in a given interval, convert the interval to the z scale and then calculate the probability by using the standard normal table.

If X is distributed as $N(\mu, \sigma)$, then the standardized variable

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard normal distribution.

If X is distributed as $N(\mu, \sigma)$, then

$$
P[a \leq X \leq b]=P\left[\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right]
$$

where Z has the standard normal distribution.

Example:

Given that X has the normal distribution $N(60,4)$, find $P(55 \leq X \leq 63)$. Answer: Here the standardized variable is $\frac{\mathrm{X}-60}{4}$

$$
\begin{aligned}
& x=55 \text { gives } z=\frac{55-60}{4}=-1.25, P(z \leq-1.25)=0.1056 \\
& x=63 \text { gives } z=\frac{63-60}{4}=0.75, P(z \leq 0.75)=0.7734
\end{aligned}
$$

\bullet so, the required probability is $0.7734-0.1056=\mathbf{0 . 6 6 7 8}$

