Random variables and **probability distributions**

Random Variables (1)

- Random variable is a *numerical summary* of random outcomes.
- A random variable is a variable that takes on numerical values realized by the outcomes in the sample space generated by a *random experiment*.

- The word "random" serves as a reminder of the fact that, beforehand, we *do not know* the outcome of an experiment or its *associated value* of X.
- We use *capital letters* like X and Y to denote random variables and lowercase letters like x and y to denote their specific values.

Example: Consider X to be the *number of heads* obtained in *three tosses* of a coin.

- a. List the numerical values of *X* and the corresponding elementary outcomes.
- b. Identify all of the elementary outcomes that produce the value *x*

Random Variables (2)

Answer:

a. First, X is a variable since the *number of heads* in three tosses of a coin can have any of the values 0, 1, 2, or 3. Second, this *variable is random* in the sense that the value that would occur in a given instance *cannot be predicted with certainty*. We can, though, make a list of the elementary outcomes and the associated values of X.

Outcome	Value of X
HHH	3
HHT	2
HTH	2
HTT	1
THH	2
THT	1
TTH	1
TTT	0

b. Scanning our list, we now identify the events (i.e., the collection of the elementary outcomes) that correspond to the distinct values of *X*.

Numerical Value of X as an Event		Composition of the Event
$\begin{bmatrix} X &= & 0 \\ [X &= & 1 \\ [X &= & 2 \\ [X &= & 3 \end{bmatrix}$	 	{TTT} {HTT, THT, TTH} {HHT, HTH, THH} {HHH}

Random Variables (3)

Random variables can be discrete or continuous.

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - Probability model for a continuous random variable
 - Normal distribution
 - Standard normal distribution
 - Probability calculations with normal distributions

Probability distribution of a discrete random variable (1)

The *probability distribution* of a random variable is a representation of the *possibilities* for all possible outcomes.

The **probability distribution** or, simply the **distribution**, of a discrete random variable *X* is a list of the distinct numerical values of *X* along with their associated probabilities. Often, a formula can be used in place of a detailed list.

The *probability* that a particular value x_i occurs is denoted by $f(x_i)$.

Torm of a Discrete Trobability Distribution		
Value of <i>x</i>	Probability <i>f</i> (<i>x</i>)	
$egin{array}{c} x_1 \ x_2 \ \cdot \ \cdot \ \cdot \ \cdot \ x_k \end{array}$	$ \begin{array}{c} f(x_1) \\ f(x_2) \\ \cdot \\ \cdot \\ f(x_k) \end{array} $	
Total	1	

Form of a Discrete Probability Distribution

Probability distribution of a discrete random variable (2)

Example:

If *X* represent the *number of heads* obtained in three tosses of a fair coin, find the probability distribution of *X*.

Answer: The distinct values of X are x = 0, 1, 2, and 3. Their probabilities would be,

Value of X	Probability
0	$\frac{1}{8}$
1	$\frac{3}{8}$
2	$\frac{3}{8}$
3	$\frac{1}{8}$
Total	1

The Probability Distribution of *X*, the Number of Heads in Three Tosses of a Coin

Probability distribution of a discrete random variable (3)

The **probability distribution** of a discrete random variable *X* is described as the function

$$f(x_i) = P[X = x_i]$$

which gives the probability for each value and satisfies:

1.
$$f(x_i) \ge 0$$
 for each value x_i of X

2. $\sum_{i=1}^{n} f(x_i) = 1$

A probability distribution or the probability function describes the manner in which the *total probability 1* gets apportioned to the individual values of the random variable.

Probability distribution of a discrete random variable (4)

Example:

The following table describes the number of homework assignments *due next week* for a randomly selected set of students taking at least 14 credits. Determine the probability that;

- *a)* X is equal to or larger than 2 and
- *b)* X is less than or equal to 2.

Answer

a) The event $[X \ge 2]$ is composed of [X = 2],

[X = 3] and [X = 4]. Thus, $P[X \ge 2] = f(2) + f(3) + f(4)$ = 0.40 + 0.25 + 0.10 = 0.75

b) Similarly, $P[X \le 2] = f(0) + f(1) + f(2)$ = 0.02 + 0.23 + 0.40 = 0.65

A Probability Distribution for Number of Homework Assignments Due Next Week

Value x	Probability $f(x)$
0	.02
1	.23
2	.40
3	.25
4	.10

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - ✓ Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - Probability model for a continuous random variable
 - Normal distribution
 - Standard normal distribution
 - Probability calculations with normal distributions

Mean (expected value) of a probability distribution (1)

The mean of a random variable X is also called its **expected value** and, alternatively, denoted by E(X).

The mean of X or population mean $E(X) = \mu$ $= \sum (Value \times Probability) = \sum x_i f(x_i)$ Here the sum extends over all the distinct values x_i of X.

Example: A construction company submits bids for two projects. Listed here are the *profit* and the *probability of winning each project*. Assume that the outcomes of the *two bids are independent*.

- a) List the possible outcomes (win/not win) for the two projects and find their probabilities.
- b) Let *X* denote the company's total profit out of the two contracts. Determine the probability distribution of *X*.
- c) If it costs the company \$2000 for preparatory surveys and paperwork for the two bids, what is the expected net profit?

	Profit	Chance of winning bid
Project A	\$175,000	0.50
Project B	\$220,000	0.65

~1

C

Mean (expected value) of a probability distribution (2)

Answers:

a) Lets denote "win" by W and "not win" by N, and attach subscripts A or B to identify the project. Listed here are the possible outcomes and calculation of the corresponding probabilities.

For instance, $P(W_A N_B) = P(W_A)P(N_B)$, by independence = 0.50x0.35 = 0.175 $W_A W_B = 0.50 \times 0.65 = 0.325$ $W_A N_B = 0.50 \times 0.65 = 0.325$ $N_A W_B = 0.50 \times 0.65 = 0.325$ $N_A W_B = 0.50 \times 0.65 = 0.325$

b) and c) The amounts of profit (*X*) for the various

outcomes are listed below.

Outcome	Profit (\$) X
$W_A W_B$	175,000 + 220,000 = 395,000
$W_A N_B$	175,000
$N_A W_B$	220,000
$N_A N_B$	0

Mean (expected value) of a probability distribution (3)

Answer...cont'ed

Present the probability distribution of X and calculate E(X).

x	f(x)	xf(x)	
0	0.175	0	
175,000	0.175	30,625	
220,000	0.325	71,500	
395,000	0.325	128,375	
Total		230,500	=E(X)

Expected net profit = E(X) - cost = \$230,500 - \$2,000 = \$**228,500**

Variance and standard deviation of probability distribution (1)

The variance of X is abbreviated as Var(X) and is also denoted by σ^2 .

$$Var(X) = \sum (Deviation)^2 x (Probability) = \sum (x_i - \mu)^2 f(x_i)$$

The standard deviation of X is the positive square root of the variance and is denoted by sd(X) or σ (a Greek lower-case sigma).

	Variance and Standard Deviation of A	
	$\sigma^{2} = \operatorname{Var}(X) = \sum (x_{i} - \mu)^{2} f(x_{i})$ $\sigma = \operatorname{sd}(X) = +\sqrt{\operatorname{Var}(X)}$	
Calculation		

Alternative Formula for Hand Calculation

$$\sigma^2 = \sum x_i^2 f(x_i) - \mu^2$$

Variance and standard deviation of probability distribution (2)

Example:

Upon examination of the claims records of 280 policy holders over a period of five years, an insurance company makes an empirical determination of the probability distribution of X =number of claims in five years.

a) Calculate the expected value of *X*.

b) Calculate the standard deviation of X.

x	f(x)	xf(x)	$x^2 f(x)$
0	0.315	0	0
1	0.289	0.289	0.289
2	0.201	0.402	0.804
3	0.114	0.342	1.026
4	0.063	0.252	1.008
5	0.012	0.060	0.300
6	0.006	0.036	0.216
Total		1.381	3.643

Answers:

(a) & (b) The expectation and standard deviation of X are calculated in the left side table.

E(X) or $\mu = 1.381$

var(X) or $\sigma^2 = 3.643 - (1.381)^2 = 1.736$

Standard deviation of *X* is $\sigma = \sqrt{1.736} = 1.318$

x	f(x)
0	.315
1	.289
2	.201
3	.114
4	.063
5	.012
6	.006

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - ✓ Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - ✓ Probability model for a continuous random variable
 - Normal distribution
 - Standard normal distribution
 - Probability calculations with normal distributions

Probability model for a *continuous* **random variable** (1)

The probability distribution of a continuous random variable can ideally *assume any value* in an interval.

The **probability density function** f(x) describes the distribution of probability for a continuous random variable. It has the properties: 1. The total area under the probability density curve is 1. 2. $P[a \le X \le b] = area under the probability density curve$

- 2. $P[a \le X \le b]$ = area under the probability density curve between *a* and *b*.
- 3. $f(x) \ge 0$ for all x.

With a continuous random variable, the probability that X = x is always 0. It is only meaningful to speak about the probability that X lies in an interval.

A single point x, being an interval with a width of 0, supports 0 area, so P[X = x] = 0

Probability model for a *continuous* **random variable** (2)

When determining the probability of an interval *a* to *b*, we need not be concerned if either or both endpoints are included in the interval. Since the probabilities of X = a and X = b are both equal to 0,

b

```
P[a \le X \le b] = P[a < X \le b] = P[a \le X < b] = P[a < X < b]
\heartsuit P[a < X < b] =(Area to left of b)–(Area to the left of a)
                                                                                              b
                                                                       a
                                                                       P[b < X]
• P[b < X] = 1 - (Area to left of b)
```

Features of a continuous distribution (1)

(a) Symmetry and deviations from symmetry

(b) Different peakedness

Features of a continuous distribution (2)

The population 100*p*-th percentile is an *x* value that supports area *p* to its left and 1 - p to its right.

Lower (first) quartile = 25th percentile Second quartile (or median) = 50th percentile Upper (third) quartile = 75th percentile

Mean is the *balance point* and median is the point of *equal division* of the probability mass.

Features of a continuous distribution (3)

Example: Which of the functions sketched below could be a probability density function for a continuous random variable? Why or why not?

- (a) The function is *non-negative* and the area of the *rectangle* is $0.5 \times 2 = 1$. It is a probability density function.
- (b) Since f (x) takes *negative values* over the interval from 1 to 2, it is *not* a probability density function.
- (c) The function is *non-negative* and the area of the *triangle* is $\frac{1}{2} \times base \times height = \frac{1}{2} \times 2 \times 1 = 1$. It is a probability density function.
- (d) The function is *non-negative*, but the area of the rectangle is $1 \times 2 = 2$ so it is *not* a probability density function.

Features of a continuous distribution (4)

Example...cont'ed

Determine the following probabilities from the curve f(x) diagrammed in above *example* (a).

a) P[0 < X < 0.5]

Answer: P[0 < X < 0.5] = Area under f(x) between the points 0 and $0.5 = 0.5 \times 0.5 = 0.25$

```
b) P[0.5 < X < 1]
```

```
Answer: P[0.5 < X < 1] = (1 - 0.5) \times 0.5 = 0.25
```

c) P[1 < X < 2]

Answer: $P[1 < X < 2] = (2 - 1) \times 0.5 = 0.5$

d) P[X = 1]

Answer: P[X = 1] = 0

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - **✓** Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - ✓ Probability model for a continuous random variable
 - ✓ Normal distribution
 - Standard normal distribution
 - Probability calculations with normal distributions

Normal distribution (1)

- The normal probability distribution represents a large family of distribution, each with *unique* specification for the parameters μ and σ^2 .
- The normal distribution curve is *symmetric about its mean* μ , which locates the peak of the bell.
- The probability of the interval extending,
 - *One sd* on each side of the mean:

 $P[\mu - \sigma < X < \mu + \sigma] = 0.683$

Two sd on each side of the mean:

 $P[\mu - 2\sigma < X < \mu + 2\sigma] = 0.954$

Three sd on each side of the mean:

 $P[\mu - 3\sigma < X < \mu + 3\sigma] = 0.997$

The *curve never reaches* 0 for any value of *x*, but because the tail areas outside $(\mu - 3\sigma, \mu + 3\sigma)$ are very small, we usually terminate the graph at these points.

Normal distribution (2)

If we know the mean and variance, we can define the normal distribution by using the following notation:

Notation The normal distribution with a mean of μ and a standard deviation of σ is denoted by N(μ , σ).

Change of mean from μ_1 to a larger value μ_2 merely slides the bell-shaped curve along the axis until a new center is established at μ_2 . There is no change in the shape of the curve.

Normal distribution (3)

- A *different value for the* σ results in a different maximum height of the curve and *changes* the amount of the area in any fixed interval about μ . The position of the center does not change if only σ is changed.
- \oslash Decreasing σ increases the maximum height and the concentration of probability about μ .

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - ✓ Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - ✓ Probability model for a continuous random variable
 - ✓ Normal distribution
 - ✓ Standard normal distribution
 - Probability calculations with normal distributions

Standard normal distribution (1)

The particular normal distribution that has a mean of 0 and a standard deviation of 1 is called the *standard normal distribution*.

Standard normal distribution (2)

The following properties can be observed from the symmetry of the standard normal curve about **0**.

1. $P[Z \le 0] = 0.5$

2. $P[Z \le -z] = 1 - P[Z \le z] = P[Z \ge z]$

Example:

```
Find P[Z \le 1.37] and P[Z > 1.37]
```

Answer:

From the normal table, we see that the

probability or area to the left of 1.37 is $0.9147 = [Z \le 1.37]$.

Due to [Z > 1.37] is the complement of $P[Z \le 1.37]$ $[Z > 1.37] = 1 - P[Z \le 1.37] = 1 - 0.9147 = 0.0853$

Standard normal distribution (3)

Example:

Calculate P[-0.155 < Z < 1.60]

Answer:

P[Z < 1.60] =Area to left of 1.60 = 0.9452
[Z ≤ -0.155] =Area to left of -0.155 = 0.4384
▶ P[-0.155 < Z < 1.60] = 0.9452 - 0.4384 = 0.5068

Example:

Find P[Z < -1.9 or Z > 2.1]

Answer:

The two events Z < -1.9 and Z > 2.1 are incompatible,

so we add their probabilities: P[Z < -1.9 or Z > 2.1] = P[Z < -1.9] + P[Z > 2.1]= 0.0287 + 0.0179 = 0.0466

Standard normal distribution (4)

Example:

Locate the value of z that satisfies P[Z > z] = 0.025*Answer:*

The total area is 1, the area to the left of z must be

1 - 0.0250 = 0.9750. The marginal value with the tabular entry 0.9750 is z = 1.96

Example: Obtain the value of z for which $P[-z \le Z \le z] = 0.9$ *Answer:*

We observe from the symmetry of the curve that

P[Z < -z] = P[Z > z] = 0.05

From the normal table z = 1.65

- A. Discrete random variable
 - ✓ Probability distribution of a discrete random variable
 - ✓ Mean (expected value) and standard deviation of a probability distribution
- B. Continuous random variable
 - ✓ Probability model for a continuous random variable
 - Normal distribution
 - ✓ Standard normal distribution
 - Probability calculations with normal distributions

Probability calculations with normal distributions

To find the probability that X lies in a given interval, convert the interval to the z scale and then calculate the probability by using the standard normal table.

Example:

Given that *X* has the normal distribution *N*(60, 4), find *P*(55 ≤ *X* ≤ 63). *Answer:* Here the standardized variable is $\frac{X-60}{4}$

$$x = 55$$
 gives $z = \frac{53-60}{4} = -1.25, P(z \le -1.25) = 0.1056$

$$x = 63$$
 gives $z = \frac{63-60}{4} = 0.75$, $P(z \le 0.75) = 0.7734$

so, the required probability is 0.7734 - 0.1056 = 0.6678

