Exercise III - Random Variables

1. Based on below table, answer the following questions, $X=$ number of accidents in a month.
a) Calculate $E(X)$
b) Calculate $\operatorname{sd}(X)$
c) List the x values that lie in the interval $\mu-\sigma$ to $\mu+\sigma$ and calculate $\mu-\sigma \leq \mu+\sigma$
d) List the x values that lie in the interval $\mu-2 \sigma$ to $\mu+2 \sigma$ and calculate $\mu-2 \sigma \leq \mu+2 \sigma$

Value x	Probability $f(x)$
0	.08
1	.20
2	.19
3	.24
4	.14
5	.13
6	.02

2. A student buys a lottery ticket for $\$ 1$. For every 1000 tickets sold, two bicycles are to be given away in a drawing.
a) What is the probability that the student will win a bicycle?
b) If each bicycle is worth $\$ 200$, determine the student's expected gain.
3. If Z is a standard normal random variable, what is the probability that
a) Z exceeds 0.62 ?
b) Z lies in the interval $(-1.40,1.40)$?
c) $|Z|$ exceeds 3.0 ?
d) $|Z|$ is less than 2.0 ?
4. Suppose that a student's verbal score X from next year's Graduate Record Exam can be considered an observation from a normal population having mean 499 and standard deviation 120. Find
a) $P[X>600]$
b) $90^{\text {th }}$ percentile of the distribution
c) Probability that the student scores below 400
