Exercise III – <u>Random Variables</u>

1. Based on below table, answer the following questions, X = number of accidents in a month.

a)	Calculate $E(X)$	Value <i>x</i>	Probability f(x)
b)	Calculate $sd(X)$	0	.08
c)	List the x values that lie in the interval $\mu - \sigma$ to $\mu + \sigma$	1	.20
		2	.19
	and calculate $\mu - \sigma \le \mu + \sigma$	3	.24
d)	List the x values that lie in the interval $\mu - 2\sigma$ to $\mu + 2\sigma$	4	.14
	· · ·	5	.13
	and calculate $\mu - 2\sigma \le \mu + 2\sigma$	6	.02

- 2. A student buys a lottery ticket for \$1. For every 1000 tickets sold, two bicycles are to be given away in a drawing.
 - a) What is the probability that the student will win a bicycle?
 - b) If each bicycle is worth \$200, determine the student's expected gain.
- 3. If Z is a standard normal random variable, what is the probability that
 - a) Z exceeds 0.62?
 - b) Z lies in the interval (-1.40, 1.40)?
 - c) |Z| exceeds 3.0?
 - d) |Z| is less than 2.0?
- 4. Suppose that a student's verbal score *X* from next year's Graduate Record Exam can be considered an observation from a normal population having mean 499 and standard deviation 120. Find
 - a) P[X > 600]
 - b) 90^{th} percentile of the distribution
 - c) Probability that the student scores below 400