Solution - III

Question 1

a) $\mu=\sum x f(x)=0(0.08)+1(0.20)+2(0.19)+3(0.24)+4(0.14)+5(0.13)+$ $6(0.02)=2.63$
b) $\sigma^{2}=\sum x^{2} f(x)-\mu^{2}=\left[\begin{array}{c}0^{2}(0.08)+1^{2}(0.20)+2^{2}(0.19)+3^{2}(0.24) \\ +4^{2}(0.14)+5^{2}(0.13)+6^{2}(0.02)\end{array}\right]-(2.63)^{2}=2.4131$

$$
\boldsymbol{\sigma}=\sqrt{2.4131}=1.553
$$

c) $\mu-\sigma=2.63-1.553=1.077$
$\mu+\sigma=2.63+1.553=4.183$
The interval $[1.077,4.183]$ includes the x-values 2,3 , and 4 .
$P[1.077 \leq X \leq 4.183]=f(2)+f(3)+f(4)=\mathbf{0 . 5 7}$
d) $2 \sigma=3.106$

$$
\mu \pm 2 \sigma=2.63 \pm 3.106 \text { or }[-0.476,5.736]
$$

The interval $[-0.476,5.736]$ includes all the x values except 6 , so

$$
P[-0.476 \leq X \leq 5.736]=\mathbf{0 . 9 8}
$$

Question 2

a) The probability that the student will get either of the two winning tickets is

$$
\frac{2}{1000}=\mathbf{0 . 0 0 2}
$$

b) Consider $X=$ dollar amount of the student's winnings. The random variable X can have the values 0 or 200 with probabilities 0.998 and 0.002 , respectively.

x	$f(x)$	$x f(x)$	
0	0.998	0	
200	0.002	0.4	
		0.4	$=E(X)$

Considering now the purchase price of $\$ 1$, the student's expected gain $=\$ 0.40-\$ 1=-\$ \mathbf{0 . 6 0}$, that is, expected loss $=\$ \mathbf{0 . 6 0}$

Question 3

a) $P[Z>0.62]=1-P[Z<0.62]=1-0.7324=\mathbf{0 . 2 6 7 6}$
b) $P[-1.40<Z<1.40]=P[Z<1.40]-P[Z<-1.40]=0.9192-$ $0.0808=\mathbf{0 . 8 3 8 4}$
c) $P[|Z|>3]=P[>3]+P[<3]$

$$
\begin{aligned}
& =2 P[Z<-3] \quad \text { (by symmetry) } \\
& =2 x 0.0013=0.0026
\end{aligned}
$$

d) $P[|Z|<2]=P[-2<Z>2]=P[Z<2]-P[Z<-2]=0.9772-$ $0.0228=\mathbf{0 . 9 5 4 4}$

Alternatively, we can calculate

$$
\begin{aligned}
P[|Z|<2] & =2 P[Z<-2] \quad(\text { as in part }(b)) \\
& =2 x 0.0228=0.0456
\end{aligned}
$$

Hence, $P[|Z|<2]=1-0.0456=\mathbf{0 . 9 5 4 4}$

Question 4

a) The standardized variable is $Z=\frac{X-499}{120}$

$$
P[X>600]=P\left[X>\frac{600-499}{120}\right]=P[X>0.842]=1-0.8046=\mathbf{0 . 1 9 5 4}
$$

b) We first find the $90^{\text {th }}$ percentile of the standard normal distribution and then convert it to the x scale. Indeed, observe that

$$
P[Z<1.28]=0.8997 \approx 0.90
$$

The standardized score $z=1.28$ corresponds to

$$
x=499+120(1.28)=\mathbf{6 5 2 . 6}
$$

c) $P[X<400]=P[Z<-0.83]=\mathbf{0 . 2 0 3 3}$

