Exercise IV - Sampling and Sampling Distributions

1. A population consists of the four numbers $\{0,2,4,6\}$. Consider drawing a random sample of size 2 with replacement.
a) List all possible samples and evaluate \bar{x} for each.
b) Determine the sampling distribution of \bar{X}
c) Write down the population distribution and calculate its mean μ and standard deviation σ.
d) Calculate the mean and standard deviation of the sampling distribution of \bar{X}, obtained in part (b), and verify that these agree with μ and $\sigma / 2$, respectively.
2. A random sample of size 150 is taken from the population of the ages of juniors enrolled at a large university during one semester. This population has mean 21.1 years and standard deviation 2.6. The population distribution is not normal.
a) Is it reasonable to assume a normal distribution for the sample mean \bar{X} ? Why or why not?
b) Find the probability that \bar{X} lies between $17 . .85$ and 25.65 years.
c) Find the probability that \bar{X} exceeds 25.91 years.
3. What sample size is required in order that the standard deviation of \bar{X} be:
a) $1 / 4$ of the population standard deviation?
b) $1 / 7$ of the population standard deviation?
c) 12% of the population standard deviation?
4. Consider a random sample of 49 abrasion measurements.
a) Find the probability that the sample mean \bar{X} will lie within 2 units of the population mean - that is $P[-2 \leq \bar{X}-\mu \leq 2]$.
b) Find the number k so that $P[-k \leq \bar{X}-\mu \leq \mathrm{k}]=0.90$
c) What is the probability that will differ from \bar{X} by more than 4 units?
