Solution - \underline{IV}

Question 1

a) The table below lists the 16 possible samples (x_1, x_2) , along with the corresponding values of \overline{X} . Since n = 2, the sample mean for each member of the sample is calculated using the formula $\overline{X} = \frac{x_1 + x_2}{2}$

(x_1, x_2)	(0,0)	(0,2)	(0,4)	(0,6)	(2,0)	(2,2)	(2,4)	(2,6)
\overline{X}	0	1	2	3	1	2	3	4
(x_1, x_2)	(4,0)	(4,2)	(4,4)	(4,6)	(6,0)	(6,2)	(6,4)	(6,6)
\overline{X}	2	3	4	5	3	4	5	6

b) The 16 possible samples are equally likely, so each has a probability 1/16 of occurring. The sampling distribution of X
is obtained by listing the distinct values of X
along with the corresponding probabilities, as follows:

\overline{X}	Probability
0	1/16
1	2/16
2	3/16
3	4/16
4	3/16
5	2/16
6	1/16
Total	1

c) Since each of the four values of X are equally likely, each has probability of $\frac{1}{4}$ of occurring. The probability distribution is tabulated below, along with other calculations needed to compute the population mean and standard deviation.

x	f(x)	xf(x)	$x^2f(x)$
0	1/4	0	0
2	1/4	2/4	4/4
4	1/4	4/4	16/4
6	1/4	6/4	36/4
Total	1	12/4	56/4

Using the values in the table, we have the following:

$$\mu = \sum xf(x) = \frac{12}{4} = 3$$

$$\sigma^2 = E(X^2) - \mu^2 = \sum x^2 f(x) - \mu^2 = \frac{56}{4} - \frac{3^2}{3} = 5, \text{ so that } \sigma = \sqrt{5}$$

d) For n = 2, we know that the mean and standard deviation of the sampling distribution of \overline{X} must be as follows:

$$E(X) = \mu = \mathbf{3}$$
$$sd(\bar{X}) = \frac{\sigma}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}}$$

\overline{X}	$f(\overline{X})$	$\overline{X}f(\overline{X})$	$\overline{X}^2 f(\overline{X})$
0	1/16	0	0
1	2/16	2/16	2/16
2	3/16	6/16	12/16
3	4/16	12/16	36/16
4	3/16	12/16	48/16
5	2/16	10/16	50/16
6	1/16	6/16	36/16
Total	1	48/16	184/16

We verify these by actually calculating the distribution of \overline{X} :

Using the values in the table, we have the following (which do indeed confirm the above assertion):

$$E(\bar{X}) = \sum \bar{X}f(\bar{X}) = 48/16 = \mathbf{3}$$
$$Var(\bar{X}) = E(\bar{X}^2) - (E(\bar{X}))^2 = \sum \bar{X}^2 f(\bar{X}) - (E(\bar{X}))^2 = 184/16 - 3^2 = 5/2$$
$$sd(\bar{X}) = \sqrt{\frac{5}{2}}$$

Question 2

We have $\mu = 21.1$, $\sigma = 2.6$, and n = 150

a) We have $E(\bar{X}) = \mu = 21.1$ and $sd(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{2.6}{\sqrt{150}} = 0.2123$. Since n = 150 is large, the central limit theorem ensures that the distribution of \bar{X} is approximately normal with mean and standard deviation as calculated above.

b) The standardized variable is $Z = \frac{\bar{X} - 21.1}{0.2123}$. As such, we have

$$P[17.85 < \bar{X} < 25.65] = P\left[\frac{17.85 - 21.1}{0.2123} < Z < \frac{25.65 - 21.1}{0.2123}\right]$$
$$= P[-15.31 < Z < 21.43] = \mathbf{1}$$

c)
$$P[\bar{X} < 25.91] = P\left[Z > \frac{25.91 - 21.1}{0.2123}\right] = P[Z > 22.66] = \mathbf{0}$$

Question 3

The standard deviation of \overline{X} is $\frac{\sigma}{\sqrt{n}}$, where σ is the population standard deviation.

- a) In order to have $\frac{\sigma}{\sqrt{n}} = \frac{\sigma}{4}$, we require that $\sqrt{n} = 4$, or n = 16
- b) In order to have $\frac{\sigma}{\sqrt{n}} = \frac{\sigma}{7}$, we require that $\sqrt{n} = 7$, or n = 49
- c) In order to have $\frac{\sigma}{\sqrt{n}} = (0.12)\sigma$, we require that $\sqrt{n} = \frac{\sigma}{0.12}$ so that $n = (\frac{1}{0.12})^2 = 69.44$. Since the sample size must be an integer value, we would use n = 70 to be conservative.

Question 4

Since n = 49 is large, the distribution of \overline{X} is approximately normal with mean $= \mu$ (the population mean), and $sd(\overline{X}) = \frac{\sigma}{\sqrt{n}} = \frac{21}{\sqrt{49}} = 3$. Hence, $Z = \frac{X-\mu}{3}$ is approximately standard normal.

a)
$$P[-2 < \overline{X} - \mu < 2] = P\left[-\frac{2}{3} < Z < \frac{2}{3}\right] = P\left[Z < \frac{2}{3}\right] - \left[Z < -\frac{2}{3}\right]$$

= 0.7470 - 0.2530 = **0**.494

- b) Since P[-1.645 < Z < 1.645] = 0.90, the number k must be $1.645(sd(\overline{X}))$ Hence, k = 1.645(3) = 4.935.
- c) $P[|X \mu| > 4] = P[|Z| > \frac{4}{3}] = P[|Z| > 1.33] = 2P[|Z| < 1.33] = 2(0.0918) = 0.1836$