Solution - IV

Question 1

a) The table below lists the 16 possible samples $\left(x_{1}, x_{2}\right)$, along with the corresponding values of \bar{X}. Since $\mathrm{n}=2$, the sample mean for each member of the sample is calculated using the formula $\bar{X}=\frac{x_{1}+x_{2}}{2}$

$\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}\right)$	$(0,0)$	$(0,2)$	$(0,4)$	$(0,6)$	$(2,0)$	$(2,2)$	$(2,4)$	$(2,6)$
$\overline{\boldsymbol{X}}$	0	1	2	3	1	2	3	4
$\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}\right)$	$(4,0)$	$(4,2)$	$(4,4)$	$(4,6)$	$(6,0)$	$(6,2)$	$(6,4)$	$(6,6)$
$\overline{\boldsymbol{X}}$	2	3	4	5	3	4	5	6

b) The 16 possible samples are equally likely, so each has a probability $1 / 16$ of occurring. The sampling distribution of \bar{X} is obtained by listing the distinct values of \bar{X} along with the corresponding probabilities, as follows:

$\overline{\boldsymbol{X}}$	Probability
0	$1 / 16$
1	$2 / 16$
2	$3 / 16$
3	$4 / 16$
4	$3 / 16$
5	$2 / 16$
6	$1 / 16$
Total	1

c) Since each of the four values of X are equally likely, each has probability of $1 / 4$ of occurring. The probability distribution is tabulated below, along with other calculations needed to compute the population mean and standard deviation.

x	$f(x)$	$x f(x)$	$x^{2} f(x)$
0	$1 / 4$	0	0
2	$1 / 4$	$2 / 4$	$4 / 4$
4	$1 / 4$	$4 / 4$	$16 / 4$
6	$1 / 4$	$6 / 4$	$36 / 4$
Total	1	$12 / 4$	$56 / 4$

Using the values in the table, we have the following:

$$
\begin{gathered}
\mu=\sum x f(x)=12 / 4=3 \\
\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=\sum x^{2} f(x)-\mu^{2}=56 / 4-3^{2}=5, \quad \text { so that } \sigma=\sqrt{5}
\end{gathered}
$$

d) For $n=2$, we know that the mean and standard deviation of the sampling distribution of \bar{X} must be as follows:

$$
\begin{aligned}
& E(\bar{X})=\mu=\mathbf{3} \\
& \operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{2}}=\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{\frac{\mathbf{5}}{\mathbf{2}}}
\end{aligned}
$$

We verify these by actually calculating the distribution of \bar{X} :

\bar{X}	$f(\bar{X})$	$\bar{X} f(\bar{X})$	$\bar{X}^{2} f(\bar{X})$
0	$1 / 16$	0	0
1	$2 / 16$	$2 / 16$	$2 / 16$
2	$3 / 16$	$6 / 16$	$12 / 16$
3	$4 / 16$	$12 / 16$	$36 / 16$
4	$3 / 16$	$12 / 16$	$48 / 16$
5	$2 / 16$	$10 / 16$	$50 / 16$
6	$1 / 16$	$6 / 16$	$36 / 16$
Total	1	$48 / 16$	$184 / 16$

Using the values in the table, we have the following (which do indeed confirm the above assertion):

$$
\begin{gathered}
E(\bar{X})=\sum \bar{X} f(\bar{X})=48 / 16=\mathbf{3} \\
\operatorname{Var}(\bar{X})=E\left(\bar{X}^{2}\right)-(E(\bar{X}))^{2}=\sum \bar{X}^{2} f(\bar{X})-(E(\bar{X}))^{2}=184 / 16-3^{2}=5 / 2 \\
\operatorname{sd}(\bar{X})=\sqrt{\frac{\mathbf{5}}{\mathbf{2}}}
\end{gathered}
$$

Question 2

$$
\text { We have } \mu=21.1, \quad \sigma=2.6, \text { and } n=150
$$

a) We have $E(\bar{X})=\mu=21.1$ and $\operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{2.6}{\sqrt{150}}=0.2123$. Since $n=150$ is large, the central limit theorem ensures that the distribution of \bar{X} is approximately normal with mean and standard deviation as calculated above.
b) The standardized variable is $Z=\frac{\bar{X}-21.1}{0.2123}$. As such, we have

$$
\begin{gathered}
P[17.85<\bar{X}<25.65]=P\left[\frac{17.85-21.1}{0.2123}<Z<\frac{25.65-21.1}{0.2123}\right] \\
=P[-15.31<Z<21.43]=\mathbf{1}
\end{gathered}
$$

c) $P[\bar{X}<25.91]=P\left[Z>\frac{25.91-21.1}{0.2123}\right]=P[Z>22.66]=0$

Question 3

The standard deviation of \bar{X} is $\frac{\sigma}{\sqrt{n}}$, where σ is the population standard deviation.
a) In order to have $\frac{\sigma}{\sqrt{n}}=\frac{\sigma}{4}$, we require that $\sqrt{n}=4$, or $n=16$
b) In order to have $\frac{\sigma}{\sqrt{n}}=\frac{\sigma}{7}$, we require that $\sqrt{n}=7$, or $n=49$
c) In order to have $\frac{\sigma}{\sqrt{n}}=(0.12) \sigma$, we require that $\sqrt{n}=\frac{\sigma}{0.12}$ so that $n=\left(\frac{1}{0.12}\right)^{2}=69.44$.

Since the sample size must be an integer value, we would use $n=70$ to be conservative.

Question 4

Since $n=49$ is large, the distribution of \bar{X} is approximately normal with mean $=\mu$ (the population mean), and $\operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{21}{\sqrt{49}}=3$. Hence, $Z=\frac{X-\mu}{3}$ is approximately standard normal.
a) $P[-2<\bar{X}-\mu<2]=P\left[-\frac{2}{3}<Z<\frac{2}{3}\right]=P\left[Z<\frac{2}{3}\right]-\left[Z<-\frac{2}{3}\right]$

$$
=0.7470-0.2530=\mathbf{0 . 4 9 4}
$$

b) Since $P[-1.645<Z<1.645]=0.90$, the number k must be $1.645(s d(\bar{X}))$

Hence, $k=1.645(3)=4.935$.
c) $P[|X-\mu|>4]=P\left[|Z|>\frac{4}{3}\right]=P[|Z|>1.33]=2 P[|Z|<1.33]=2(0.0918)=\mathbf{0 . 1 8 3 6}$

