Solution - $\underline{\mathbf{V}}$

Question 1

Recall that the point estimate of μ is $\bar{x}=\frac{\sum x_{i}}{n}$ and the estimated standard error is $\frac{s}{\sqrt{n}}$, where $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
a) $\bar{x}=\frac{3230.84}{38}=85.02$
b) $S . E=\frac{s}{\sqrt{n}}=\frac{\sqrt{\frac{2028.35}{37}}}{\sqrt{38}}=1.201$
c) 95% error margin is $z_{0.025} \frac{s}{\sqrt{n}}=(1.96)(1.201)=2.354$

Question 2

a) The population mean μ is estimated by $\bar{x}=126.9$. Estimated $S . E .=\frac{10.5}{\sqrt{55}}=1.416$. So, the approximate 95.4% error margin is given by 2 (Estimated S.E.) $=$ $2(1.416) \approx 2.8$.
b) Observe that $1-\alpha=0.90$ implies $\alpha=0.10$, so that $z_{\alpha / 2}=z_{0.05}=1.645$. A 90% confidence interval for μ is calculated as follows:

$$
\bar{x} \pm 1.645 \frac{s}{\sqrt{n}}=126.9 \pm 1.645(1.416)=126.9 \pm 2.329 \text { or }(124.571,129.228)
$$

Question 3

The alternative hypothesis H_{1} is the assertion that is to be established; its opposite is the null hypothesis H_{0}.
a) Let μ denote the population mean mileage. The hypotheses are:

$$
H_{0}: \mu=50, H_{1}: \mu<50
$$

b) Let μ denote the population mean number of pages per transmission. The hypotheses are: $H_{0}: \mu=3.4, H_{1}: \mu>3.4$
c) Let p denote the probability of success with the method. The hypotheses are: $H_{0}: p=0.5, H_{1}: p>0.5$
d) Let μ denote the mean fill. The hypotheses are: $H_{0}: \mu=16, H_{1}: \mu \neq 16$
e) Let μ denote the mean percent fat content. The hypotheses are:

$$
H_{0}: p=0.04, H_{1}: p>0.04
$$

Question 4

Let μ denote the mean number of words per sentence.
a) We test the hypotheses: $H_{0}: \mu=9.1, H_{1}: \mu \neq 9.1$
b) The test statistic is $z=\frac{\bar{x}-9.1}{\frac{s}{\sqrt{n}}}$
c) Since H_{1} is two-sided, the rejection region $R:|z| \geq z_{\alpha / 2}$
d) Using $\mathrm{x}=8.6, \mathrm{~s}=1.2, \mathrm{n}=36$, we see that the test statistic is $z=\frac{8.6-9.1}{\frac{1.2}{\sqrt{36}}}=-2.5$. For $\alpha=0.10$, the rejection region is $R:|z| \geq z_{0.05}=1.645$. Since the test statistic value is in R, we reject H_{0} at $\alpha=0.10$.
e) The associated p-value is $2 P(Z \leq-2.5)=2(0.0062)=0.0124$.
f) Since we rejected H_{0}, we could have made a Type I error in that we rejected the fact that there are 9.1 words per sentence, on average, when this is in fact the case.

